Casimir operators of semidirect sum Lie algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L321
(http://iopscience.iop.org/0305-4470/21/6/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:37

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Casimir operators of semidirect sum Lie algebras

C Quesne \dagger
Service de Physique Théorique et Mathématique CP229, Université Libre de Bruxelles, Bd du Triomphe, B1050 Brussels, Belgium

Received 28 January 1988

Abstract

A new method for constructing the Casimir operators of a class of non-semisimple Lie algebras is presented. This class includes the semidirect sums of the unitary, orthogonal or symplectic algebras with a Heisenberg-Weyl algebra $w(n)$. The construction procedure is illustrated with the simple example of the $\mathrm{wu}(n)=\mathrm{w}(n) \bigoplus \mathrm{u}(n)$ algebras. Its power is then demonstrated on the more difficult case of the $\mathrm{wsp}(2 n, R)=\mathrm{w}(n) \oplus \operatorname{sp}(2 n, R)$ algebras. Detailed results are given for the eigenvalues of the $\operatorname{wsp}(6, R)$ Casimir operators, relevant to a microscopic theory of nuclear collective motions.

Invariant operators of Lie algebras (also called Casimir operators) are interesting from both mathematical and physical viewpoints. Their eigenvalues can indeed be used to label the irreducible representations (irreps) of the algebras and can also often be identified with the quantum numbers of some physical observables. For the unitary, orthogonal and symplectic algebras, the problems of constructing the Casimir operators and of computing their eigenvalues have been completely solved (Perelomov and Popov 1966, Popov and Perelomov 1967, Popov 1976, Nwachuku and Rashid 1976, 1977, Nwachuku 1979, and references therein). On the other hand, for non-semisimple Lie algebras, such problems remain largely unsolved.

In the present letter, we will show that these important questions can be easily answered for a whole class of non-semisimple Lie algebras. The latter consists of the semidirect sums of the unitary, orthogonal or symplectic algebras with a HeisenbergWeyl algebra $\mathrm{w}(n)$, i.e. an algebra spanned by n pairs of boson creation and annihilation operators and the unit operator I.

Let us illustrate our Casimir operator construction method with the simple case of the $\mathrm{wu}(n)=\mathrm{w}(n) \oplus \mathrm{u}(n)$ algebras. They are spanned by the operators $E_{i j}=\left(E_{j i}\right)^{+}, B_{i}^{\dagger}$, $B_{i}=\left(B_{i}^{+}\right)^{*}, i, j=1, \ldots, n$, and I, whose non-zero commutators are given by

$$
\begin{align*}
& {\left[E_{i j}, E_{k l}\right]=\delta_{j k} E_{l l}-\delta_{i l} E_{k j}} \tag{1a}\\
& {\left[B_{i}, B_{j}^{+}\right]=\delta_{i j} I} \tag{1b}\\
& {\left[E_{i j}, B_{k}^{+}\right]=\delta_{j k} B_{i}^{+} \quad\left[E_{i j}, B_{k}\right]=-\delta_{i k} B_{j} .} \tag{1c}
\end{align*}
$$

Here $E_{i j}, i, j=1, \ldots, n$, are the $\mathrm{u}(n)$ subalgebra generators, while $B_{i}^{\dagger}, B_{i}, i=1, \ldots, n$, span, together with I, the invariant Heisenberg-Weyl subalgebra $w(n)$.

From (1), it follows that the operators $E_{i j}^{\prime}=\left(E_{j i}^{\prime}\right)^{\dagger}, i, j=1, \ldots, n$, defined by

$$
\begin{equation*}
E_{i j}^{\prime}=E_{i j}-B_{i}^{\dagger} B_{j} \tag{2}
\end{equation*}
$$

\dagger Directeur de recherches FNRS.
are invariant under $\mathrm{w}(n)$, and transform under $\mathrm{u}(n)$ in the same way as the generators, i.e.

$$
\begin{equation*}
\left[E_{i j}^{\prime}, B_{k}^{+}\right]=\left[E_{i j}^{\prime}, B_{k}\right]=0 \quad\left[E_{i j}, E_{k l}^{\prime}\right]=\delta_{j k} E_{i l}^{\prime}-\delta_{i l} E_{k j}^{\prime} \tag{3}
\end{equation*}
$$

Hence they satisfy commutation relations similar to equation (1a), and generate another $\mathbf{u}(n)$ algebra, that we shall denote by $\mathrm{u}^{\prime}(n)$ to distinguish it from the $\mathrm{u}(n)$ algebra spanned by $E_{i j}$.

The $\mathrm{u}^{\prime}(n)$ algebra has n independent Casimir operators $G_{p}^{\prime}, p=1, \ldots, n$, given by (Perelomov and Popov 1966)

$$
\begin{equation*}
G_{p}^{\prime}=\sum_{i_{1} i_{2} \ldots i_{p}} E_{i_{1} i_{2}}^{\prime} E_{i_{2} i_{3}}^{\prime} \ldots E_{i_{p} i_{1}}^{\prime} . \tag{4}
\end{equation*}
$$

From (3), it is obvious that such operators are also invariant under wu(n):

$$
\begin{equation*}
\left[G_{p}^{\prime}, E_{i j}\right]=\left[G_{p}^{\prime}, B_{i}^{+}\right]=\left[G_{p}^{\prime}, B_{i}\right]=0 . \tag{5}
\end{equation*}
$$

Hence, by introducing (2) into (4), we obtain the required wu(n) Casimir operators $\hat{G}_{2 p}=\sum_{i_{1} i_{2} \ldots i_{n}}\left(E_{i_{1} i_{2}}-B_{i_{1}}^{\dagger} B_{i_{2}}\right)\left(E_{i_{2} i_{3}}-B_{i_{2}}^{\dagger} B_{i_{3}}\right) \ldots\left(E_{i_{p} i_{1}}-B_{i_{p}}^{\dagger} B_{i_{1}}\right) \quad p=1, \ldots n$
which are inhomogeneous polynomials of degree $2 p$ in the $\mathrm{wu}(n)$ generators.
The same kind of construction also applies to other semidirect sum Lie algebras $w g=w(n) \boxplus g$, where g may be any semisimple, classical algebra. In every case, in the enveloping algebra of w, one builds a semisimple algebra g^{\prime} of the same type as g, such that its generators commute with the $\mathrm{w}(n)$ ones. Then the Casimir operators of g^{\prime} are also invariant under $w g$ and may be taken as Casimir operators of the latter. Such a procedure works for both compact and non-compact algebras.

To illustrate the latter point and to show how the knowledge of the g^{\prime} Casimir operator eigenvalues can be used to compute those of the wg Casimir operators, let us consider the example of the $w s p(2 n, R)=w(n) \oplus \operatorname{sp}(2 n, R)$ algebras. Such a case is physically relevant since, as recently shown, the wsp $(6, R)$ algebra finds an interesting application to the microscopic theory of nuclear collective motions (Quesne 1987, 1988).

Let us denote the $\operatorname{sp}(2 n, R)$ and $\mathrm{w}(n)$ generations by $D_{i j}^{\dagger}, D_{i j}=\left(D_{i j}^{+}\right)^{+}, E_{i j}=$ $\left(E_{j i}\right)^{\dagger}, i, j=1, \ldots, n$, and $B_{i}^{\dagger}, B_{i}, i=1, \ldots, n$, respectively. Here $E_{i j}$ are the generators of the $u(n)$ subalgebra, $D_{i j}^{+}\left(D_{i j}\right)$ are the $\mathrm{sp}(2 n, R)$ raising (lowering) non-compact generators, while B_{i}^{\dagger}, B_{i} satisfy equation ($1 b$) and are vector operators with respect to $\operatorname{sp}(2 n, R)$. The $\operatorname{wsp}(2 n, R)$ irreps, relevant to the theory of nuclear collective motions, are positive discrete series ones, characterised by their lowest weight and denoted by $\langle\boldsymbol{\Omega}\rangle$, where $\boldsymbol{\Omega}=\Omega_{1} \Omega_{2} \ldots \Omega_{n}$ (Quesne 1987, 1988). Their lowest weight state (Lws) $|\boldsymbol{\Omega}\rangle$ satisfies the following equations:

$$
\begin{align*}
& E_{i i}|\boldsymbol{\Omega}\rangle=\Omega_{n+1-i}|\boldsymbol{\Omega}\rangle \quad E_{i j}|\boldsymbol{\Omega}\rangle=0 \quad(i>j) \\
& D_{i j}|\boldsymbol{\Omega}\rangle=0 \quad B_{i}|\boldsymbol{\Omega}\rangle=0 \tag{7}
\end{align*}
$$

For the $\operatorname{wsp}(2 n, R)$ generators, it is convenient to use the more compact notation $\Lambda_{\alpha \beta}, V_{\alpha}$, where greek indices run over $\pm 1, \ldots, \pm n$, and

$$
\begin{array}{lll}
\Lambda_{i j}=D_{i j}^{\dagger} & \Lambda_{-i,-j}=D_{i j} & \Lambda_{i,-j}=\Lambda_{-j, i}=E_{i j} \\
V_{i}=B_{i}^{\dagger} & V_{-i}=B_{i} & i, j=1, \ldots, n . \tag{8}
\end{array}
$$

These operators satisfy the following symmetry and Hermiticity properties:

$$
\begin{align*}
& \Lambda_{\alpha \beta}=\Lambda_{\beta \alpha}=\left(\Lambda_{-\alpha,-\beta}\right)^{\dagger} \tag{9a}\\
& V_{\alpha}=\left(V_{-\alpha}\right)^{+} \tag{9b}
\end{align*}
$$

and their commutators are given by

$$
\begin{align*}
& {\left[\Lambda_{\alpha \beta}, \Lambda_{\gamma \delta}\right]=g_{\gamma \alpha} \Lambda_{\beta \delta}+g_{\gamma \beta} \Lambda_{\alpha \delta}+g_{\delta \beta} \Lambda_{\gamma \alpha}+g_{\delta \alpha} \Lambda_{\gamma \beta}} \tag{10a}\\
& {\left[V_{\alpha}, V_{\beta}\right]=g_{\beta \alpha} I \quad\left[\Lambda_{\alpha \beta}, V_{\alpha}\right]=g_{\gamma \alpha} V_{\beta}+g_{\gamma \beta} V_{\alpha}} \tag{10b}
\end{align*}
$$

in terms of the metric tensor

$$
\begin{equation*}
g_{\alpha \beta}=(\alpha /|\alpha|) \delta_{\alpha,-\beta} \tag{11}
\end{equation*}
$$

The operators $\Lambda_{\alpha \beta}^{\prime}$, defined by

$$
\begin{equation*}
\Lambda_{\alpha \beta}^{\prime}=\Lambda_{\alpha \beta}-\frac{1}{2}\left(V_{\alpha} V_{\beta}+V_{\beta} V_{\alpha}\right)=\Lambda_{\alpha \beta}-V_{\alpha} V_{\beta}-\frac{1}{2} g_{\alpha \beta} I \tag{12}
\end{equation*}
$$

satisfy equations similar to ($9 a$) and ($10 a$), and therefore span an $\operatorname{sp}^{\prime}(2 n, R)$ algebra. Since, in addition, they commute with the $\mathrm{w}(n)$ generators V_{α}, the $\mathrm{sp}^{\prime}(2 n, R)$ Casimir operators, given by (Nwachuku and Rashid 1976, 1977, Nwachuku 1979)

$$
\begin{align*}
& G_{2 p}^{\prime}=\frac{1}{2} \operatorname{tr}\left(\Lambda^{\prime}\right)^{2 p} \\
&=\frac{1}{2} \sum_{\alpha_{1} \alpha_{2} \ldots \alpha_{2 p} \beta_{1} \beta_{2} \ldots \beta_{2 p}} g^{\alpha_{1} \beta_{1}} g^{\alpha_{2} \beta_{2}} \ldots g^{\alpha_{2 p} \beta_{2 p}} \Lambda_{\beta_{1} \alpha_{2}}^{\prime} \Lambda_{\beta_{2} \alpha_{3}}^{\prime} \ldots \Lambda_{\beta_{2 p} \alpha_{1}}^{\prime} \\
& \quad p=1, \ldots, n \tag{13}
\end{align*}
$$

are invariant under $\operatorname{wsp}(2 n, R)$.
At first sight, these operators seem to be of degree $4 p$ in the $\operatorname{wsp}(2 n, R)$ generators. However, from (10b), it follows that

$$
\begin{equation*}
\operatorname{tr} V^{2}=\sum_{\alpha \beta} g^{\alpha \beta} V_{\beta} V_{\alpha}=-n I . \tag{14}
\end{equation*}
$$

Hence the highest degree terms in $G_{2 p}^{\prime}$ are proportional to $\operatorname{tr}\left[(\Lambda \cdot V V)^{p}+(V V \cdot \Lambda)^{p}\right]$, so that $G_{2 p}^{\prime}$ is only of degree $3 p$ in the $\operatorname{wsp}(2 n, R)$ generators. Since, moreover, $G_{2 p}^{\prime}$ contains a term $\gamma_{p} I$, proportional to the unit operator, let us define the $\operatorname{wsp}(2 n, R)$ Casimir operators $\hat{G}_{3 p}$ by the relation

$$
\begin{equation*}
\hat{G}_{3 p}=G_{2 p}^{\prime}-\gamma_{p} I \quad p=1, \ldots, n . \tag{15}
\end{equation*}
$$

The value of $\gamma_{p}, p=1, \ldots, n$, will be determined below.
The eigenvalues $\hat{g}_{3 p}(\boldsymbol{\Omega})$ of $\hat{G}_{3 p}$, corresponding to $\langle\langle\boldsymbol{\Omega}\rangle$, can be calculated by acting with $\hat{G}_{3 p}$ on the irrep Lws $|\boldsymbol{\Omega}\rangle$. For such a purpose, we note that the $\mathrm{sp}^{\prime}(2 n, R)$ generators can be rewritten as

$$
\begin{align*}
& D_{i j}^{\prime+}=\Lambda_{i j}^{\prime}=D_{i j}^{\dagger}-B_{i}^{\dagger} B_{j}^{\dagger} \quad D_{i j}^{\prime}=\Lambda_{-i,-j}^{\prime}=D_{i j}-B_{i} B_{j} \tag{16}\\
& E_{i j}^{\prime}=\Lambda_{i,-j}^{\prime}=E_{i j}-B_{i}^{\dagger} B_{j}-\frac{1}{2} \delta_{i j} I .
\end{align*}
$$

Hence the $\operatorname{wsp}(2 n, R)$ Lws $|\boldsymbol{\Omega}\rangle$ satisfies the relations

$$
\begin{equation*}
E_{i i \mid}^{\prime}|\boldsymbol{\Omega}\rangle=\Omega_{n+1-i}^{\prime}|\boldsymbol{\Omega}\rangle \quad E_{i j}^{\prime}|\boldsymbol{\Omega}\rangle=0(i>j) \quad D_{i j}^{\prime}|\boldsymbol{\Omega}\rangle=0 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{i}^{\prime}=\Omega_{i}-\frac{1}{2} . \tag{18}
\end{equation*}
$$

It is therefore the Lws of an $\operatorname{sp}^{\prime}(2 n, R)$ irrep $\left\langle\boldsymbol{\Omega}^{\prime}\right\rangle$, where $\boldsymbol{\Omega}^{\prime}=\Omega_{1}^{\prime} \Omega_{2}^{\prime} \ldots \Omega_{n}^{\prime}$. The corresponding eigenvalue equation for $G_{2 p}^{\prime}$ is

$$
\begin{equation*}
G_{2 p}^{\prime}|\boldsymbol{\Omega}\rangle=g_{2 p}\left(\boldsymbol{\Omega}^{\prime}\right)|\boldsymbol{\Omega}\rangle \tag{19}
\end{equation*}
$$

where the explicit expression of $g_{2 p}\left(\boldsymbol{\Omega}^{\prime}\right)$ in terms of $\boldsymbol{\Omega}^{\prime}$ can be found from Nwachuku's tables (1979).

After introducing (18) into $g_{2 p}\left(\boldsymbol{\Omega}^{\prime}\right)$, the latter separates into an $\boldsymbol{\Omega}$-dependent term and a constant, which are the eigenvalue $\hat{\mathrm{g}}_{3 p}(\boldsymbol{\Omega})$ of $\hat{G}_{3 p}$, and the constant γ_{p}, respectively. In the $\operatorname{wsp}(6, R)$ case, for instance, the results are

$$
\begin{align*}
& \hat{g}_{3}(\boldsymbol{\Omega})=\sum_{i} \Omega_{i}\left(\Omega_{i}-2 i-1\right) \quad \hat{g}_{6}(\boldsymbol{\Omega})=\sum_{i} \Omega_{i}\left(\Omega_{i}-2 i-1\right)\left[\Omega_{i}\left(\Omega_{i}-2 i-1\right)+\frac{9}{2}+2 i+2 i^{2}\right] \\
& \hat{g}_{g}(\boldsymbol{\Omega})=\sum_{i} \Omega_{i}\left(\Omega_{i}-2 i-1\right) \\
& \quad \times\left(\Omega_{i}^{2}\left(\Omega_{i}-2 i-1\right)^{2}+\left(\frac{223}{4}+3 i-3 i^{2}\right) \Omega_{i}\left(\Omega_{i}-2 i-1\right)\right. \tag{20}\\
& \left.\quad-\frac{14053}{16}+\frac{281}{2} i+\frac{287}{2} i^{2}+6 i^{3}+3 i^{4}-\frac{29}{2} \sum_{j \neq i} \Omega_{j}\left(\Omega_{j}-2 j-1\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\gamma_{1}=\frac{27}{4} \quad \gamma_{2}=\frac{1971}{16} \quad \gamma_{3}=\frac{159435}{64} . \tag{21}
\end{equation*}
$$

By using equation (16), expressions of the Casimir operators $\hat{G}_{3 p}$ in terms of the original generators $D_{i j}^{+}, D_{i j}, E_{i j}, B_{i}^{\dagger}$ and B_{i} can also be obtained. The cubic Casimir operator, for instance, can be rewritten as

$$
\begin{equation*}
\hat{G}_{3}=\sum_{i j}\left(D_{i j}^{\dagger} B_{i} B_{j}+B_{i}^{\dagger} B_{j}^{\dagger} D_{i j}-2 B_{i}^{\dagger} E_{j i} B_{j}\right)+\sum_{i}\left(2 B_{i}^{\dagger} B_{i}-E_{i i}\right)+G_{2} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{2}=\sum_{i j}\left[E_{i j} E_{j i}-D_{i j}^{+} D_{i j}\right]-(n+1) \sum_{i} E_{i i} \tag{23}
\end{equation*}
$$

is the $\operatorname{sp}(2 n, R)$ quadratic Casimir operator. Up to a multiple of the unit operator, equation (22) generalises to wsp($2 n, R$), a result previously obtained by Hughes (1981) for $\operatorname{wsp}(2, R)$.

References

Hughes J W B 1981 J. Math. Phys. 222775
Nwachuku C O 1979 J. Math. Phys. 201260
Nwachuku C O and Rashid M A 1976 J. Math. Phys. 171611

- 1977 J. Math. Phys. 181387

Perelomov A M and Popov V S 1966 Yad. Fiz. 3 924, 1127 (1966 Sov. J. Nucl. Phys. 3 676, 819)
Popov V S 1976 Teor. Mat. Fiz. 29357 (1976 Theor. Math. Phys. 29 1122)
Popov V S and Perelomov A M 1967 Yad. Fiz. 5693 (1967 Sov. J. Nucl. Phys. 5 489)
Quesne C 1987 Phys. Lett. 188B 1

- 1988 submitted for publication

